Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane

نویسندگان

  • Franklin S. Kinnaman
  • David L. Valentine
  • Stanley C. Tyler
چکیده

Carbon isotope fractionation factors associated with the aerobic consumption of methane (C1), ethane (C2), propane (C3), and nbutane (C4) were determined from incubations of marine sediment collected from the Coal Oil Point hydrocarbon seep field, located offshore Santa Barbara, CA. Hydrogen isotope fractionation factors for C1, C2 and C3 were determined concurrently. Fresh sediment samples from two seep areas were each slurried with sea water and treated with C1, C2, C3 or C4, or with mixtures of all four gases. Triplicate samples were incubated aerobically at 15 C, and the stable isotope composition and headspace levels of C1–C4 were monitored over the course of the experiment. Oxidation was observed for all C1–C4 gases, with an apparent preference for C3 and C4 over C1 and C2 in the mixed-gas treatments. Fractionation factors were calculated using a Rayleigh model by comparing the dC and dD of the residual C1–C4 gases to their headspace levels. Carbon isotope fractionation factors (reported in e or (a 1) · 1000 notation) were consistent between seep areas and were 26.5& ± 3.9 for C1, 8.0& ± 1.7 for C2, 4.8& ± 0.9 for C3 and 2.9& ± 0.9 for C4. Fractionation factors determined from mixed gas incubations were similar to those determined from individual gas incubations, though greater variability was observed during C1 consumption. In the case of C1 and C3 consumption, carbon isotope fractionation appears to decrease as substrate becomes limiting. Hydrogen isotope fractionation factors determined from the two seep areas differed for C1 oxidation but were similar for C2 and C3. Hydrogen isotope fractionation factors ranged from 319.9& to 156.4& for C1 incubations, and averaged 61.9& ± 8.3 for C2 incubations and 15.1& ± 1.9 for C3 incubations. The fractionation factors presented here may be applied to estimate the extent of C1–C4 oxidation in natural gas samples, and should prove useful in further studying the microbial oxidation of these compounds in the natural environment. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anaerobic Oxidation of Ethane, Propane, and Butane by Marine Microbes: A Mini Review

The deep ocean and its sediments are a continuous source of non-methane short-chain alkanes (SCAs) including ethane, propane, and butane. Their high global warming potential, and contribution to local carbon and sulfur budgets has drawn significant scientific attention. Importantly, microbes can use gaseous alkanes and oxidize them to CO2, thus acting as effective biofilters. A relative decreas...

متن کامل

The anaerobic degradation of gaseous, nonmethane alkanes — From in situ processes to microorganisms

The short chain, gaseous alkanes ethane, propane, n- and iso-butane are released in significant amounts into the atmosphere, where they contribute to tropospheric chemistry and ozone formation. Biodegradation of gaseous alkanes by aerobic microorganisms, mostly bacteria and fungi isolated from terrestrial environments, has been known for several decades. The first indications for short chain al...

متن کامل

Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing.

Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with (13)C-labeled methane, ethane, or propane, we confirmed the incorporati...

متن کامل

Molecular and Isotopic Composition of Volatiles in Gas Hydrates and in Sediment from the Joetsu Basin, Eastern Margin of the Japan Sea

Hydrate-bearing sediment cores were retrieved from the Joetsu Basin (off Joetsu city, Niigata Prefecture) at the eastern margin of the Japan Sea during the MD179 gas hydrates cruise onboard R/V Marion Dufresne in June 2010. We measured molecular and stable isotope compositions of volatiles bound in the gas hydrates and headspace gases obtained from sediments to clarify how the minor components ...

متن کامل

A Comparison of Ceria and Sm-Doped Ceria for Hydrocarbon Oxidation Reactions

The oxidation of methane, ethane, propane, and n-butane has been studied over CeO2 and Ce0.8Sm0.2Ox (SDC) catalysts. The rates for methane and ethane were found to be indistinguishable over the two catalysts, while the rates for propane and n-butane were much higher on ceria compared to SDC. The difference between n-butane oxidation over ceria and SDC is shown to result from a low-temperature r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006